Course Code
PHYS - TBD

Course Title
Introductory Physics I

ECTS Credits
6

Department
Physics

Term
Summer

Prerequisites
None

Type of Course
Field

Field
Science

Language of Instruction
English

Level of Course

Year of Study

Lecturer(s)

Mode of Delivery
Face-to-Face

Work Placement

Co-requisites

Aims:

The principal aim of this course is to provide students with a firm understanding of the basic concepts of physics and the methods scientists use to explore natural phenomena, including observation, hypothesis development, measurement and data collection, experimentation, evaluation of evidence, and employment of mathematical analysis.

Objectives of the Course:

By the end of this course it is to be expected that the students will have acquired an understanding of the following concepts and principles:

- Velocity and acceleration of an object
- Newton’s laws
- The gravitational force and the weight of an object
- Work, potential energy and kinetic energy
- Torque and rotational motion
- Linear momentum and angular momentum
- Pressure in a fluid and viscous flow
- Elastic deformation and oscillatory motion
- Wave motion
- Transmission of sound
- The properties of an ideal gas
- The nature of heat
- Thermodynamics

Reading List:

Physics for Scientists and Engineers by R.A. Serway & J. W. Jewett (publisher: Brooks/Cole). Most of the assigned problems in the course will be taken from...
this (calculus based) book. Additionally the following books will be used: *Fundamentals of Physics* by Halliday, Resnick & Walker (publisher: Wiley) *University Physics* by H.D. Young & R.A. Freedman (publisher: Pearson)

Teaching Methods:

(a) Lectures
- There are eight lectures per week scheduled for one hour.

(b) Homework/Problem Solving
- One set of problems will be handed out each week, which must be submitted for grading.

(c) Workshops
- There are two 2-hour workshops each week devoted to problem solving; these will be group-based, with each group comprising three students, graded as a group.

(d) Laboratory
- There are two 3-hour laboratory afternoons each week in which a new experiment is performed each afternoon. Here the students will work in pairs and will be graded in pairs.

Independent Study
- It is estimated that each module will require a minimum of 80 hours of independent study.

Assessment Methods:

The course will be assessed by means of a mid-session quiz and final examination, as well as the laboratory and the problem sets.

<table>
<thead>
<tr>
<th>Weighting</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Sets/Tutorials</td>
<td>15%</td>
</tr>
<tr>
<td>Mid-Session Quiz</td>
<td>10%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>50%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>25%</td>
</tr>
</tbody>
</table>